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Digital Health in Epilepsy Care
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Data Collection Findings

Who collects data”? How is data collected?

Intake survey responses: patients (n=14), caregivers (n=10) Patient Intake Survey Responses (n=12)
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Bidwell, Jonathan. Supporting daily self-management practices for paediatric patients with epilepsy. 2018. Georgia Institute of Technology. PhD



Reliability Findings
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Bidwell, Jonathan. Supporting daily self-management practices for paediatric patients with epilepsy. 2018. Georgia Institute of Technology. PhD
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http://www.oprah.com/home/make-your-mornings-better-organizational-makeover/all

EpiCare. Josh has taken his meds

Medication taken. Thank you!



http://www.oprah.com/home/make-your-mornings-better-organizational-makeover/all

A. Wearable, mobile, clinical, implantable
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C. Integrated forecast of seizure likelihood
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Stirling, Rachel E., et al. "Seizure forecasting and cyclic control of seizures." Epilepsia 62 (2021): S2-S14.

High Risk Warning
High chance of seizure next
10 minutes

D. Possible user interface designs
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New Software Standards are Enabling Adoption

Self-reporting Self-management Self-reflection

“Risk-based” adverse event forecasting

SMART on FHIR

Bidwell, Jonathan. Supporting daily self-management practices for pediatric patients with epilepsy. 2018. Georgia Institute of Technology. PhD
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Clinical Apps

Seizure History and Rejection of Non-Seizures from

Medication Video of Wristband Events Patient Cohort Dashboard

Nov 16, 2018 to Dec 16, 2018
feot ~@-Sezuessshn | Rescuetiodsuen Tk Securschser

# Responders % Responded |- Gender

Male (8)

Female (2)

Ethnicity

Hispanic or Latin

Bidwell et. al, Rejection of Non-seizures from Retrospective Video of Reported Epileptic Seizure Events. Conference on Human. CHI WISH. 2017.



Patient Apps
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Bidwell, Jonathan. Supporting daily self-management practices for pediatric patients with epilepsy. 2018. Georgia Institute of Technology. PhD 12



Bluetooth Proximity Tags

Contingent reminders - triggered simultaneously on BOTH participants’ phones

Bidwell, Jonathan. Supporting daily self-management practices for pediatric patients with epilepsy. 2018. Georgia Institute of Technology. PhD
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Voice Assistant

A voice assistant provides notifications and administers surveys

“EpiCare report a
seizure”

“Have you taken your meds today?”

f —
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Bidwell, Jonathan. Supporting daily self-management practices for pediatric patients with epilepsy. 2018. Georgia Institute of Technology. PhD



Smartwatch

A smartwatch administers surveys and attempts to evaluate patient cognition

“It looks like you’re having a
seizure... can you count
backwards from 20 for me?”

Please answer the following
questions:

o How many seizures did you
have today?

o What medications are you I
taking?

Bidwell, Jonathan. Supporting daily self-management practices for pediatric patients with epilepsy. 2018. Georgia Institute of Technology. PhD
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History of Seizure Detection

Smartwatch, EMG, EKG, Intercranial, Pressure, Video, Multimodal, Mobile
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Meisel, Christian, and Kimberlyn A. Bailey. "ldentifying signal-dependent information about the preictal state: A comparison across ECoG, EEG and EKG using deep learning." EBioMedicine (2019)



Establishing Ground-truth

Reviewers documented V/EEG onset and duration of seizure events
Procedure
Document semiology

Electrographic and clinical
onsets & durations

Clinical onset & duration

2 reviewers per seizure
(EEG tech + board certified attending)
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Onorati, Francesco, Bidwell, Jonathan et al. "Multicenter clinical assessment of improved wearable multimodal convulsive seizure detectors." Epilepsia 58.11 (2017)
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Results

Evaluated E4 wristband performance in terms of precision, recall and F-score

true positive

false positive

false negative

E4 wristband events o I LN
V/EEG (ground truth)
time >
Predicted Seizures t
Precision = P Precision 50.98%
" tp + fp
© Y
23 TP =52 FN =3 tp
25 Recall = Recall 94.55%
n FP = 50 TN = NA tp+ fn

55 convulsive seizures total

*CHOA (only patients) - Precision, 55%, Recall 86%
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Most devices only outperform self-reporting at night

Patient Self-Reporting
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Bidwell, Jonathan, et al. "Seizure reporting technologies for epilepsy treatment: a review of clinical information needs and supporting technologies." Seizure 32 (2015): 109-117.




New Discoveries from Longitudinal Monitoring
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Maxime O. Baud, et al, Multi-day rhythms modulate seizure risk in epilepsy. Nature, 2018
Gregg, Nicholas M., et al. "Seizure occurrence is linked to multiday cycles in diverse physiological signals." Epilepsia (2023
Karoly, Philippa J., et al. "Circadian and circaseptan rhythms in human epilepsy: a retrospective cohort study." Neurology (2018)



Feature Extraction in Forecasting

NeuroPace RNS Device

Empatica E4 wristband
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Maxime O. Baud, et al, Multi-day rhythms modulate seizure risk in epilepsy. Nature, 20121
Gregg, Nicholas M., et al. "Seizure occurrence is linked to multiday cycles in diverse physiological signals." Epilepsia (2023).



Cycles in Seizure Forecasting
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Gregg, Nicholas M., et al. "Seizure occurrence is linked to multiday cycles in diverse physiological signals." Epilepsia (2023)



Patient-specific Seizure Forecasting
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Maxime O. Baud, et al, Multi-day rhythms modulate seizure risk in epilepsy. Nature, 2018
Meisel, Christian, et al. "Machine learning from wristband sensor data for wearable, non-invasive seizure forecasting." Epilepsia (2020)3
Goldenholz, Daniel M., et al. "Development and validation of forecasting next reported seizure using e-diaries." Annals of neurology (2020)



Communicating Seizure Forecasts
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Chiang, Sharon, et al. "Evaluation and recommendations for effective data visualization for seizure forecasting algorithms." JAMIA (2021)p4
Andrzejak, Ralph G., et al. "Seizure forecasting: Where do we stand?." Epilepsia (2023).



Multi-modal forecasting concepts

Patient-
specific
risk
factors

Integrated forecast
of seizure likelinood

DBS / RNS
Limited EEG, epileptic events
stimulation

Cortical (research)
continuous EEG
stimulation

Sub-scalp (clinical trial)
continuous EEG

= \ \ /
fe 1 Sensor patches
A - g EEG, ECG, EMG, glucose

Wearables

Heart rate, skin temp., oxygen saturation,
respiratory rate, accelerometery, skin
conductance, sleep scoring

Mobile App
Diary, weather, medication,
self report (i.e. mood/stress),
accelerometery

Stirling, Rachel E., et al. "Seizure forecasting and cyclic control of seizures." Epilepsia 62 (2021): 82?§ 4.

Dumanis, Sonya B., et al. "Seizure forecasting from idea to reality. Outcomes of the my seizure gauge epilepsy innovation institute workshop." Eneuro 4.6 (2017).



Need help with Health Tech? Lets collaborate
* Applied Al/ML,

Computer vision / robotics,

Writing grants,

Developing EHR apps

Jonathan.Bidwell@ochsner.org
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