# Feeling Blue: 10 Fast Facts About Methemoglobinemia

Ashley Henderson, MD



## 1. What is methemoglobinemia?

A condition where hemoglobin's iron is oxidized from ferrous (Fe<sup>2+</sup>) to ferric (Fe<sup>3+</sup>), producing methemoglobin that cannot bind oxygen. As a result, oxygen delivery to tissues decreases even though arterial oxygen tension (PaO<sub>2</sub>) remains normal. This leads to functional anemia and tissue hypoxia.

#### 2. Normal baseline levels are low.

Methemoglobin normally accounts for <2% of total hemoglobin. NADH- and NADPH-dependent reductase systems maintain this balance by reducing ferric iron back to ferrous iron.

### 3. Causes: inherited and acquired.

Inherited causes include cytochrome b5 reductase deficiency and hemoglobin M variants.

Acquired cases are far more common, often triggered by oxidizing drugs such as **dapsone**, benzocaine, **lidocaine**, nitrates, nitrites, and aniline dyes.

## 4. Methemoglobinemia look-alikes.

Cyanosis and hypoxia with a low SpO<sub>2</sub> can also occur in sulfhemoglobinemia, severe hypoxemia, or carbon monoxide poisoning.

# Clinical signs include refractory cyanosis.

Your suspicion should increase with known cases of:

- Persistent cyanosis despite high-flow oxygen therapy.
- Blood appears chocolate-brown and does not turn red when exposed to air.

• Symptoms vary with concentration: 10–20% causes headache and fatigue, 30–40% confusion and dyspnea, and >50% can lead to arrhythmias, seizures, and death.

## 6. Pulse oximetry and ABG can mislead (the 'saturation gap').

In methemoglobinemia, SpO<sub>2</sub> readings plateau around 85% regardless of true oxygenation, while PaO<sub>2</sub> remains normal or elevated on ABG. This is known as the saturation gap. It should raise suspicion for dyshemoglobinemia.

#### 7. Severity depends on methemoglobin level and patient reserve.

Healthy individuals may tolerate levels up to 15–20%, but patients with anemia, cardiovascular disease, or pulmonary disease may deteriorate even at lower levels. Levels >40% are considered lifethreatening, requiring immediate antidotal therapy.

#### 8. Methylene blue is first-line therapy.

Indicated for symptomatic patients or levels >30%. Initial dose: **1–2 mg/kg IV over 5 minutes**. Clinical improvement occurs within minutes. If symptoms persist or methemoglobin remains >30% after one hour, a **second dose of 1 mg/kg** may be given. Maximum total dose: 7 mg/kg to avoid paradoxical oxidation.

#### 9. Contraindications and alternatives.

Methylene blue requires NADPH, so it may be ineffective in G6PD-deficient patients. Contraindicated in pregnancy and with SSRI use due to serotonin syndrome risk.

Alternative therapies include high-dose **Vitamin C** (ascorbic acid) 1.5–3 g IV every 6 hours and exchange transfusion in refractory or severe cases.

# 10. Rebound methemoglobinemia can occur.

Rebound often results from ongoing oxidant exposure or short methylene blue duration. Recheck levels 1–2 hours after treatment and again at 6 hours. Continuous monitoring for recurrent cyanosis and hypoxia is essential in high-risk patients.

#### References:

- 1. Farkas J. Shock & vasoactive medications. Internet Book of Critical Care (EMCrit). June 17, 2024. Accessed October 9, 2025. https://emcrit.org/ibcc/shock/#methylene\_blue\_(MB)
- 2. The Metabolic & Molecular Bases of G6PD Deficiency. The Medical Biochemistry Page. Accessed October 9, 2025. https://themedicalbiochemistrypage.org/glucose-6-phosphate-dehydrogenase-g6pd-deficiency/
- 3. Methemoglobinemia: A Case of the Blues. EMRA EMResident. Accessed October 9, 2025. https://www.emra.org/emresident/article/methemoglobinemia
- 4. Methemoglobinemia. Internet Book of Critical Care (EMCrit). Accessed October 9, 2025. https://emcrit.org/ibcc/methemoglobinemia/
- 5. Dangers of Poppers. Poison Control. Accessed October 9, 2025. https://www.poison.org/articles/dangers-of-poppers
- 6. Nelson LS, Howland MA, Lewin NA, Smith SW, Goldfrank LR, Hoffman RS, eds. Methemoglobinemia. In: Goldfrank's Toxicologic Emergencies. 12th ed. McGraw-Hill; 2023.
- 7. Gharahbaghian, L., Massoudian, B., & Dimassa, G. (2009). Methemoglobinemia and sulfhemoglobinemia in two pediatric patients after ingestion of hydroxylamine sulfate. Western Journal of Emergency Medicine, 10(3), 197-201. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2729224/